Translate

27 fevereiro 2024

Explorando a Complexa Relação entre Renda e Crime

É bem conhecido que pessoas com renda mais baixa cometem mais crimes. Chame isso de resultado transversal. Mas por quê? Um conjunto de explicações sugere que é precisamente a falta de recursos financeiros que causa crime. De forma simplificada, talvez pessoas mais pobres cometam crimes para obter dinheiro. Ou, pessoas mais pobres enfrentam maiores pressões - raiva, frustração, ressentimento - o que as leva a agir ou pessoas mais pobres vivem em comunidades menos integradas e bem policiadas ou pessoas mais pobres têm acesso a piores cuidados médicos ou educação e assim por diante, o que leva a mais crime. Essas teorias implicam todas que dar dinheiro às pessoas reduzirá sua taxa de criminalidade.

Um conjunto diferente de teorias sugere que a correlação negativa entre renda e crime (mais renda, menos crime) não é causal, mas é causada por uma terceira variável correlacionada tanto com renda quanto com crime. Por exemplo, um QI mais alto ou maior conscienciosidade poderia aumentar a renda enquanto reduz o crime. Essas teorias implicam que dar dinheiro às pessoas não reduzirá sua taxa de criminalidade.

As duas teorias podem ser distinguidas por um experimento que aloca dinheiro aleatoriamente. Em um artigo notável, Cesarini, Lindqvist, Ostling e Schroder relatam os resultados de um experimento desses na Suécia.

Cesarini et al. observam suecos que ganham na loteria e comparam suas taxas subsequentes de criminalidade com não-ganhadores semelhantes. O resultado básico é que, se alguma coisa, há um leve aumento na criminalidade ao ganhar na loteria, mas, mais importante ainda, os autores podem rejeitar estatisticamente que a maior parte do resultado transversal seja causal. Em outras palavras, como aumentar aleatoriamente a renda de uma pessoa não reduz sua taxa de criminalidade, o primeiro conjunto de teorias é falsificado.

Algumas observações. Primeiro, você pode objetar que os jogadores de loteria não são uma amostra aleatória. No entanto, uma parte substancial dos dados de loteria de Cesarini et al. vem de contas de poupança vinculadas a prêmios, contas de poupança que pagam grandes prêmios em troca de pagamentos de juros mais baixos. As contas de poupança vinculadas a prêmios são comuns na Suécia e cerca de 50% dos suecos têm uma conta PLS. Assim, os jogadores de loteria na Suécia parecem bastante representativos da população. Em segundo lugar, Cesarini et al. têm dados sobre cerca de 280 mil ganhadores da loteria e têm o universo de condenações criminais; isto é, qualquer condenação de um indivíduo com 15 anos ou mais de idade de 1975 a 2017. Uau! Em terceiro lugar, algumas pessoas podem objetar que a correlação que observamos é entre condenações e renda e talvez as condenações não reflitam o crime real. Não acho que isso seja plausível por várias razões, mas os autores também não encontram evidências estatisticamente significativas de que a riqueza reduza a probabilidade de alguém ser suspeito em uma investigação criminal (Deus abençoe os suecos pela coleta de dados extremos). Em quarto lugar, a análise foi pré-registrada e correções são feitas para testes de hipóteses múltiplas. Preocupo-me um pouco com o fato de que os ganhos na loteria, na sua maioria, são da ordem de 20 mil ou menos e gostaria que os autores tivessem falado mais sobre o seu tamanho em relação às diferenças transversais. No entanto, no geral, este parece ser um artigo muito credível.

Em seu resultado mais importante, mostrado abaixo, Cesarini et al. convertem ganhos na loteria em choques de renda permanente equivalentes (usando uma taxa de juros de 2% ao longo de 20 anos) para estimar causalmente o efeito de choques de renda permanente sobre o crime (quadrados sólidos abaixo) e eles comparam com os resultados transversais para jogadores de loteria em sua amostra (círculo) ou pessoas similares na Suécia (triângulo). Os resultados transversais são todos negativos e diferentes de zero. Os resultados causais da loteria são na maioria positivos, mas nenhum rejeita zero. Em outras palavras, aumentar aleatoriamente a renda das pessoas não reduz sua taxa de criminalidade. Assim, a correlação negativa entre renda e crime deve-se a uma terceira variável. Como os autores resumem de forma bastante modesta:

Embora nossos resultados não devam ser extrapolados casualmente para outros países ou segmentos da população, a Suécia não se destaca por taxas de criminalidade particularmente baixas em relação a países comparáveis, e a taxa de criminalidade em nossa amostra de jogadores de loteria é apenas ligeiramente menor do que na população sueca em geral. Além disso, há uma forte relação negativa transversal entre crime e renda, tanto em nossa amostra de jogadores de loteria suecos quanto em nossa amostra representativa. Nossos resultados, portanto, desafiam a visão de que a relação entre crime e status econômico reflete um efeito causal de recursos financeiros sobre a delinquência adulta.


Fonte: Marginal Revolution (negrito meu). 

26 fevereiro 2024

Como Decidir

Comecei a ler o livro Como Decidir e inicialmente não gostei. O estilo de deixar espaços em branco para que o leitor faça “exercícios” pareceu meio bobo. E realmente quase não fiz as tarefas que Anne Duke sugere ao leitor. Mas gostei muito do que li e recomendo a obra. E o principal motivo é que Duke apresenta conselhos que parecem óbvios, mas você fica pergunta, depois de ler um monte de livros, qual a razão de nunca ter pensado sobre o assunto. 


 Eis um pequeno exemplo. Duke mostra, logo na página 3, que qualidade de decisão e qualidade de resultado são coisas similares, mas não são iguais. Nós temos a tendência a achar que uma decisão foi boa em razão do seu resultado e isso não é verdade. Imaginei um exemplo aqui: você comprou um bilhete de loteria. Se você analisar sob a ótica da probabilidade a sua decisão foi péssima. Mas eis que você foi sorteado. O resultado foi ótimo, mas sua decisão não. As vezes tomamos decisões ruins e tudo acaba bem. Isso é pura sorte, como ela deixa claro no livro. 

Há também a possibilidade de tomar uma boa decisão e o resultado ser ruim, o que é um azar. Você recusou a entrar no bolão da loteria dos colegas e o número foi sorteado; seus colegas ganharam o prêmio, você não. É o azar. Outro ensinamento muito valioso do livro: nós sabemos coisas antes da decisão e sabemos coisas depois do resultado. 

A decisão do jogador Alex Sandro que avançar ao ataque, no jogo da Copa do Mundo de 2022 contra a Croácia, teve consequências que hoje sabemos. Mas sabemos porque temos o resultado do jogo. Há muito o que aprender no livro. Logo após ter completado a leitura deste livro, tomei a coragem de ler Pensar em Apostas, também de Duke. Eu gostei muito mais desta obra. Assim, se tiver que escolher um livro para ler, opte por este.

Livro: Mindshift

Eis que abro o livro Mindshift com grandes expectativas. Várias semanas depois de terminar sua leitura, volto ao texto e lembro que marquei o conceito da palavra: transformação intensa de vida que ocorre graças ao aprendizado. Isso parece realmente interessante e importante. Barbara Oakley é professora e já trabalhou com psicologia, bioengenharia e outros conteúdos. Segundo a orelha do livro, seus dois cursos abertos, um deles Mindshift, possui um grande alcance. A autora realmente usa sua experiência de ministrar sobre o assunto no livro e traz experiências que vivenciou sobre o assunto. 


O texto passa pela técnica pomodoro, pelo incentivo a uma vida ativa, pela mudança cultural, o uso de jogos para treinamento cerebral e por aí vai. Eu percebo claramente quando gosto de um livro ao folhear depois de ler e verificar se há muitas marcações. Meu exemplar tem duas marcações somente e isso me faz perguntar o que aconteceu de errado. Afinal, o assunto é interessante, a autora tem capacidade para escrever sobre o assunto e li com relativa atenção. 

Uma possível explicação talvez esteja na produção gráfica da BestSeller, algo que um leigo como eu não saberia compreender. Mas há a insistência da autora em vender os MOOCs (Massive Online Open Courses) como sendo a grande solução para os problemas do mundo. O capítulo 11 tem o título “A vantagem dos MOOCs e do aprendizado virtual”. Como leitor atento notei a ausência de uma capítulo com “a desvantagem dos MOOCs”. Talvez que a insistência em vender o currículo e não o conteúdo: em diversos locais é Dra. Barbara Oakley ou Barbara Oakley, phD. Ou quem sabe seja o fato de que livros de divulgação científica devem ter bons casos, contados de forma atraente.

Falsidade

De um longo artigo de Tim Harford sobre falsificação:

Considere uma nova análise no Journal of Experimental Psychology dos psicólogos Ariana Modirrousta-Galian e Philip Higham. Eles examinam jogos como Bad News e Go Viral!, desenvolvidos por pesquisadores da Universidade de Cambridge para ajudar a "inocular" as pessoas contra notícias falsas. E funcionam, até certo ponto. Após jogar esses jogos, os sujeitos experimentais são de fato mais propensos a identificar notícias falsas como falsas. Infelizmente, eles também são mais propensos a identificar histórias de notícias genuínas como falsas. Sua capacidade de discriminar entre verdadeiro e falso não melhora. Em vez disso, eles se tornam mais cínicos sobre tudo.


O texto é sobre o falsificador Eric Hebborn, mas este trecho achei bem interessante. 

25 fevereiro 2024

Rir é o melhor remédio


 

Longo Sono dos Cães de Guarda do Capitalismo

Do pluralistic:

(...) Um dos aspectos mais estranhos do capitalismo em estágio final é o colapso da auditoria, o pilar do investimento. Auditores - profissionais independentes que atestam as finanças de uma empresa - são a única maneira pela qual os investidores podem ter certeza de que não estão entregando seu dinheiro a empresas falidas dirigidas por vigaristas.

Não é viável para os investidores conversarem com parceiros de cadeia de suprimentos e varejistas e verificar se os pedidos e custos de uma empresa são reais. Investidores não podem entrar no banco de uma empresa e exigir ver seus históricos de conta. Auditores - que são pagos pelas empresas, mas trabalham para si mesmos - são como os investidores evitam despejar dinheiro em buracos de Ponzi.


Leitores atentos terão notado que há uma tensão intrínseca em um arranjo onde alguém é pago por uma empresa para certificar sua honestidade. A empresa decide quem são seus auditores, e esses auditores dependem da empresa para futuros negócios. Para gerenciar esse conflito de interesses, os auditores juram lealdade a um código de ética profissional e são supervisionados por conselhos profissionais com o poder de emitir multas e banir trapaceiros.

(...) Cada uma das quatro grandes empresas de contabilidade também é uma consultoria corporativa. Alguns desses serviços de consultoria são o trabalho normal de consultores corporativos - conselhos padrão para demitir trabalhadores e reduzir a qualidade do produto, além de fornecer software empresarial perigosamente defeituoso. Mas você pode obter isso dos facilitadores superpagos da McKinsey ou da BCG. A vantagem de contratar uma grande empresa de contabilidade para consultoria é que elas podem ajudá-lo a cometer fraude financeira.

(...) Ao comprar seus conselhos de trapaça da mesma empresa que é paga para certificar que você não está trapaceando, você melhora muito suas chances de evitar detecção até ter fugido da cidade.

Isso me leva à ideia do "bezzle". Este é o termo de John Kenneth Galbraith para "as semanas, meses ou anos que transcorrem entre a comissão do crime e sua descoberta". Este é o período em que tanto o criminoso quanto a vítima sentem que estão melhorando. O trapaceiro tem o dinheiro da vítima, e a vítima não sabe disso. O Bezzle é esse intervalo em que você ainda está assumindo que a FTX não está mentindo para você sobre os retornos loucos que estão gerando para sua criptomoeda. É o período entre você receber a caixa selada com um PS5 com desconto de 90% de um cara em um beco e chegar em casa e descobrir que está cheia de tijolos e isopor.

A contabilidade de grande porte é uma fábrica para produzir bezzles em escala. O jogo é viciado, e eles são os viciadores. 

(...) Então: em vez de cultivar um relacionamento adversário com as Quatro Grandes, a PCAOB efetivamente se fundiu com elas. Dois de seus assentos no conselho são reservados para contadores, e esses dois assentos foram ocupados por veteranos das Quatro Grandes quase sem exceção

(...) Esse arranjo corrupto atingiu um clímax em 2019, com a nomeação de William Duhnke - anteriormente do gabinete do senador Richard Shelby [R-AL] - que assumiu como Contador-Chefe. Sob a liderança de Duhnke, o cão de guarda já sem dentes foi primeiro castrado, depois eutanasiado. Duhnke demitiu todos os quatro chefes da principal divisão da PCAOB e depois deixou seus assentos vagos por 18 meses. Ele cortou o orçamento da agência, "enfraqueceu os requisitos de inspeção e as políticas de independência do auditor e ignorou as obrigações de realizar reuniões do Conselho e divulgar sua agenda".

Tudo isso acabou em 2021, quando o presidente da SEC, Gary Gensler, demitiu Duhnke e o substituiu por Erica Williams, a pedido de Bernie Sanders e Elizabeth Warren. Em menos de um ano, Williams emitiu 42 ações de execução, o maior número desde 2017, impondo mais de US$ 11 milhões em sanções.

(Tradução ChatGPT. Foto: Unsplash+

Rir é o melhor remédio


 Vida imita a arte

24 fevereiro 2024

Hackers e Sustentabilidade

Os hackers estão abrindo uma nova frente nas guerras de segurança cibernética corporativa ao sequestrar a torrente de dados sensíveis relacionados ao clima e à energia que saem das empresas.

Em janeiro, a empresa de consultoria Schneider Electric foi atingida por um ataque de ransomware em sua divisão Sustainability Business, que ajuda as empresas clientes a monitorar suas emissões, melhorar sua eficiência energética e obter energia renovável, entre outros serviços. O ataque deixou alguns dos softwares essenciais da divisão off-line por duas semanas, durante as quais um volume não revelado de dados de clientes foi comprometido. Um porta-voz da Schneider se recusou a especificar o que exatamente foi roubado (ou responder a quaisquer perguntas além de um comunicado de imprensa conciso), mas o principal programa atingido gerencia os dados de uso de energia dos clientes, incluindo estimativas de emissões, faturas de serviços públicos e informações em nível de instalação que são mais detalhadas do que as que as empresas normalmente tornam públicas.


A Schneider se recusou a dizer se pagou um resgate para recuperar os dados roubados, mas por enquanto o episódio parece ter terminado. A empresa disse que está investigando e planeja tomar "ações adicionais" para melhorar sua segurança cibernética.

O ataque à Schneider ilustra uma nova vulnerabilidade para as empresas que já estão enfrentando pressão dos órgãos reguladores e dos acionistas para rastrear e reduzir suas emissões. As empresas estão compilando mais dados sobre energia e clima do que nunca, o que tem o potencial de revelar detalhes confidenciais de suas operações e fatos embaraçosos sobre sua pegada ambiental. E, muitas vezes, estão compartilhando esses dados com uma proliferação de empresas terceirizadas de contabilidade e consultoria: a própria Schneider está desenvolvendo planos de descarbonização para pelo menos um terço das empresas da Fortune 500. Os dados climáticos precisam de uma atualização de segurança, ou a disposição das empresas para lidar com suas emissões poderá ser reduzida.

Fonte: Semafor NetZero. Tradução DeepL

23 fevereiro 2024

Desafio do Escopo 3 exige rigor no que se diz

A divulgação de informações climáticas representa um novo desafio para as empresas. Nesse sentido, as informações são classificadas em Escopo 1, Escopo 2 e Escopo 3, conforme indicariam a responsabilidade da empresa que divulga a informação. Os dois primeiros escopos estão vinculados à responsabilidade da empresa com a emissão de poluentes, direta (escopo 1) ou indireta (escopo 2). A grande polêmica sempre foi o escopo 3, que são as emissões da cadeia de valor da empresa.

Os reguladores gostariam de obrigar a empresa a divulgar a informação sobre a emissão da cadeia de valor. Faz certo sentido, na medida em que uma empresa pode terceirizar uma atividade poluente e isso não aparecer no relatório de sustentabilidade. Uma empresa que produz e vende um celular pode terceirizar a produção de uma peça que terá um maior impacto para o clima para um fornecedor. Em seu relatório de sustentabilidade, essa emissão não será divulgada caso não exista a obrigatoriedade de fornecer a informação do escopo 3.

Um argumento contra a divulgação dessa informação é que a responsabilidade não é da empresa que divulga, mas de outra entidade. E que essa informação deveria ser evidenciada pelo fornecedor, que terá mais condições de apresentar algo que seja útil para o usuário. Há outra questão que envolve o constrangimento de exigir a informação de um fornecedor, que muitas vezes não possui condições de obter o dado.

O regulador parece entender que a divulgação do escopo 3 é uma forma de olhar o processo como um todo, incluindo as atividades terceirizadas. O celular talvez não seja tão poluente, mas a sua bateria, um componente feito por terceiros, sim. O processo de produção da bateria só ocorreu pela existência do celular. Essa é uma visão que tem prevalecido no mundo dos negócios, onde as empresas devem ser rigorosas não somente com suas políticas sociais e de sustentabilidade, mas também com os fornecedores.

Se o escopo 3 é um grande desafio para as empresas, a qualidade da informação divulgada desse item também sofre. Simi Thambi faz algumas considerações interessantes sobre esse assunto. Segundo ele, o escopo 3 corresponde a 70% das emissões totais de uma empresa. Não há uma informação detalhada de onde surgiu esse número, e acredito que o percentual varie conforme a empresa. Ou seja, desconfio desse percentual. A proposta do ISSB, a entidade criada para emitir normas de divulgação relacionadas com os relatórios contábeis e vinculada à Fundação IFRS, apoia a divulgação do escopo 3. Esse apoio já permite que sejam feitos estudos sobre essa informação. Thambi mostra que o resultado não é bom, mas vejo uma série de lacunas em sua análise. (O texto de Thambi está em itálico)


Uma análise de 4 mil grandes e médias empresas, divulgada no dia 25 de janeiro, mostr a que, embora muitas empresas relatem várias categorias de emissões de Escopo 3, muitas vezes elas ignoram as emissões mais materiais – aquelas com a maior parcela das emissões totais. Mais da metade das 2 mil empresas que reportam emissões de mbito 3 omitem estas categorias cruciais das suas divulgações.

[Isso é estranho. Se a informação é omitida, como foi possível saber que isso ocorreu ou se a informação é imaterial?] 

Isto indica uma tendência em que as empresas, para efeitos de elaboração de relatórios, dão prioridade a dados de emissões que são mais fáceis de obter, ignorando potencialmente dados que, embora mais difíceis de recolher, poderiam levar a oportunidades para reduções mais significativas de gases com efeito de estufa.

[Como é possível saber se isso está ocorrendo? São muitas empresas, onde as informações podem não estar sendo divulgadas por outro problema. Assume aqui que a não divulgação é pela não obtenção da informação]

Além disso, a análise mostra que apenas duas categorias – uso de produtos vendidos e bens e serviços adquiridos, entre as 17 subcategorias do Escopo 3 – representam mais de 80% da maioria das emissões do Escopo 3 das empresas, destacando sua importância para o relatório. 

[Novamente, se há lacunas nos relatórios divulgados, como é possível ter tanta certeza desse percentual? Baseado na lei de Pareto, onde 20% dos itens irão representar 80% dos valores, o percentual pareceu exagerado]

Confiança alta nos cientistas

Uma pesquisa global envolvendo mais de 70.000 participantes, em 67 países, revela que as pessoas em todo o mundo geralmente confiam nos cientistas e desejam sua maior participação na formulação de políticas. Apesar da possível polarização causada pela pandemia de COVID-19, os níveis de confiança permanecem altos em diferentes grupos demográficos. 


O estudo, conduzido por pesquisadores de todo o mundo, emprega uma abordagem abrangente para medir a confiança, destacando a integridade, competência, benevolência e abertura dos cientistas. Em média, os participantes atribuíram uma confiança moderadamente alta, com percepções de que os cientistas são competentes e benevolentes, embora a abertura ao feedback tenha recebido uma pontuação mais baixa. 


Os níveis de confiança variaram entre os países, com Egito (4,30), Índia (4,26) e Nigéria (3,98) exibindo mais confiança, enquanto Albânia (3,05), Cazaquistão (3,13) e Bolívia (3,22) mostraram menos confiança. A Rússia, celeiro de grandes cientistas, teve uma nota de 3,23. O Brasil está no patamar superior, com uma média de 3,78. 

A orientação política influenciou a confiança, com visões de esquerda geralmente associadas a uma maior confiança, embora essa correlação tenha variado entre os países. Muitos participantes defendem uma maior participação dos cientistas na formulação de políticas, apesar de reconhecerem os desafios que os cientistas enfrentam nas arenas de políticas públicas. 

O estudo destaca a importância da comunicação eficaz e do treinamento para os cientistas que se envolvem na formulação de políticas. Embora o estudo forneça uma visão geral ampla da confiança nos cientistas, os níveis de confiança podem variar entre os campos científicos. Os pesquisadores pretendem disponibilizar o conjunto de dados global de forma aberta para facilitar estudos adicionais sobre o tema.

22 fevereiro 2024

ChatGPT explica a pandemia usando jargões contábeis


Eu: Você pode resumir a pandemia usando o máximo de jargões de contador possível?

Chat: "Então, basicamente, começou com um aumento repentino nas 'vendas de álcool em gel' e 'máscaras faciais', o que levou a uma grande demanda por 'estoque de emergência'. As empresas foram obrigadas a 'reduzir as horas de trabalho' e 'fechar as portas temporariamente' devido a 'ordens de confinamento' e 'bloqueios'. Isso resultou em uma queda drástica nas 'vendas a descoberto' e 'margens de lucro'. Enquanto isso, o governo estava ocupado implementando 'injeções de estímulo' e 'programas de auxílio' para tentar 'reduzir os impactos econômicos'. Houve um aumento significativo nas 'transações online' e 'trabalho remoto', levando a uma mudança para 'contabilidade digital' e 'ferramentas de colaboração virtual'. No entanto, também vimos um aumento alarmante em 'fraudes de desemprego' e 'ciberataques' devido à falta de 'controles internos' eficazes. Agora, estamos esperando ansiosamente pela 'recuperação econômica' e 'reabertura total', enquanto tentamos manter nossos 'ativos líquidos' e 'fluxo de caixa' sob controle."

Interessante

Sofisticação financeira e qualidade de investimento

Este estudo tem como objetivo analisar a relação entre a sofisticação financeira (SF) do chief executive officer (CEO) e a eficiência dos investimentos corporativos por meio de análise empírica em uma amostra de 189 empresas listadas na B3 S.A. - Brasil, Bolsa, Balcão (B3), no período de 2010 a 2021. As pesquisas sobre as características pessoais dos gestores têm explorado, principalmente, os aspectos relacionados à tomada de decisão nas políticas financeiras das empresas. Assim, este estudo busca adicionar um novo elemento à discussão, investigando como essas características estão relacionadas à eficiência na utilização dos recursos disponíveis para investimentos. Ao explorar a relação entre a SF do CEO com a eficiência do investimento, acrescenta-se à discussão na literatura sobre como as características dos gestores impactam a forma com que os tomadores de decisão conduzem as empresas. Isso acrescenta novos insights à compreensão de como as habilidades financeiras e as características individuais dos gestores podem influenciar o desempenho e os resultados das organizações. A pesquisa é relevante ao apresentar a relação entre a expertise do CEO e as decisões de investimento no mercado brasileiro, em que a oferta de capital tende a ser baixa (restrição financeira); consequentemente, investir de forma mais assertiva e eficiente impacta o resultado e na perpetuidade da organização. Por meio de uma proxy que mede a eficiência dos investimentos, realizaram-se regressões pelo método dos momentos generalizado sistêmico [generalized method of moments (GMM-Sis)] e regressão multinomial. As análises sugerem que a SF do CEO está relacionada à eficiência dos investimentos de diferentes maneiras. Quando a SF é mensurada na forma de componentes, a experiência passada tem relação negativa com os desvios do nível ótimo dos investimentos. No entanto, o componente internacional tem relação positiva com tais desvios. Além disso, uma análise multinomial mostrou que a experiência do CEO ajuda a diminuir a probabilidade de realizar subinvestimento, indicando que o CEO experiente tende a contribuir para a eficiência dos investimentos das empresas.

A variável de sofisticação financeira foi obtida da seguinte forma:

O artigo pode ser baixado aqui

Rir é o melhor remédio


 Preço e leilão

21 fevereiro 2024

Autoatendimento: entre redução de custo e satisfação do cliente

As estações de autoatendimento estão em toda parte. Quando tentamos falar com o banco ou a empresa de telefonia, enfrentamos um grande número de teclas, palavras robotizadas e péssimo atendimento. É muito irritante para o cliente. E parece que as empresas não enxergam isso. 


O autoatendimento também chegou no varejo. No exterior é muito comum um mercado onde o próprio cliente passa suas mercadorias e paga, sem auxílio do caixa. Mas parece que algumas empresas estão revendo essa política. 

A Dollar General inicialmente expandiu agressivamente as estações de autoatendimento, visando reduzir custos trabalhistas e agilizar o processo de compra. No entanto, a empresa revisou sua estratégia devido a preocupações com perdas de mercadorias, incluindo furtos e outros fatores. O CEO da empresa destacou a importância de ter funcionários para monitorar as áreas de autoatendimento, sugerindo uma mudança na abordagem. 

Além desse fato, é notório que a tendência de implementação de automação de baixa qualidade em diversos setores, o que inclui menus telefônicos automatizados, que são amplamente impopulares. Embora isso possa possa reduzir custos trabalhistas, pode resultar em experiências negativas para os clientes sendo, portanto, questionável a validade dessa abordagem.

(Experiência pessoal: sai da minha empresa de telefonia e escolhi uma bem menor com a promessa que o atendimento seria menos automatizado)

IA e o risco global


um relatório recente do Fórum Econômico Mundial descobriu que 53% dos entrevistados consideravam a desinformação e a informação falsa geradas por IA entre as ameaças mais prováveis de apresentar uma crise material global em 2024, ficando em segundo lugar apenas atrás do clima extremo (66%). E, com 2024 prestes a ser um ano de eleições recorde, a capacidade da IA de criar imagens falsificadas hiper-realistas pode muito bem abrir a caixa de Pandora nas urnas em escala global.

Rir é o melhor remédio

Rotatividade
 

20 fevereiro 2024

A linguagem nem sempre clara do Emoji

Interessante isso: um estudo mostrou que as pessoas nem sempre conseguem entender o significado dos emojis. 


Eis o resumo:

Os emojis são um importante substituto para pistas não verbais (como expressões faciais) na comunicação escrita online. Até agora, no entanto, pouco se sabe sobre as diferenças individuais em relação à forma como são percebidos. No estudo atual, examinamos a influência do gênero, idade e cultura na compreensão de emojis. Especificamente, uma amostra de 523 participantes do Reino Unido e China completou uma tarefa de classificação de emojis. Nesta tarefa, eles foram apresentados com uma série de emojis, cada um representando uma das seis expressões emocionais faciais, em quatro plataformas comumente usadas (Apple, Android, WeChat e Windows). Sua tarefa era escolher entre seis rótulos (feliz, triste, bravo, surpreso, temeroso, enojado) qual emoção era representada por cada emoji. Os resultados mostraram que todos os fatores (idade, gênero e cultura) tiveram um impacto significativo na forma como os emojis foram classificados pelos participantes. Isso tem importantes implicações ao considerar o uso de emojis, por exemplo, em conversas com parceiros de diferentes culturas.

Parte da descoberta sugere que as mulheres são mais eficientes em captar o significado das expressões para alguns tipos de emojis, assim como os mais jovens. Como o estudo foi aplicado em dois países, parece que os pesquisados do Reino Unido são melhores. 

Da minha parte, confesso que demorei muito tempo para entender o significado do símbolo 🙏 era "hi-fi" e não prece por algo. Muito tempo mesmo. 🤫

Desafios da análise das informações contábeis em um mundo de influenciadores

Lendo Nate Silver sobre o processo eleitoral e o efeito do poder na popularidade dos eleitores, a análise de Silver mostra que os titulares, aqueles que estão no poder, não possuem tanta vantagem assim. Os exemplos recentes em democracias pelo mundo mostram que os eleitores preferiram a oposição, independentemente da linha política. Para Silver, as pessoas estão chateadas e isso está refletindo não somente nas eleições presidenciais, mas também nas votações para representantes do legislativo.


Este não é um blog de política, mas há uma tentativa de analisar os dados por parte de Silver que chega à mídia e aos algoritmos. A cobertura da mídia tem sido negativa e talvez isso explique a falta de popularidade dos governantes. Mesmo que os grandes grupos corporativos da imprensa sejam favoráveis ao governo, o poder talvez não esteja tão centralizado assim. A era da mídia social significa que qualquer pessoa pode produzir e divulgar, de forma simples e barata, notícias. E a lógica da mídia social não é a notícia favorável ou não a um determinado candidato, como foi no passado com os grupos jornalísticos. O que conta agora são os números de curtidas, de comentários ou divulgação. Assim, mesmo que o objetivo seja promover boas notícias, se um artigo sobre o aumento da criminalidade está sendo muito curtido, este será o grande destaque.


Nesse sentido, os casos negativos tendem a ter melhor repercussão. Hans Rosling, em Factfulness, mostra que os fatos são diferentes das opiniões e que a “realidade” que lemos nas principais notícias da mídia é muito pior do que a verdadeira realidade. O livro mostra as razões das notícias negativas terem tanta repercussão. A oposição sabe disso e procura valorizar o lado negativo da situação atual para obter o poder.

À medida que os algoritmos estão mais eficientes, as notícias negativas tendem a prevalecer. Agora imagine esse panorama para as empresas. As notícias de um lucro ou melhoria de desempenho pode ser eclipsadas em opiniões sobre um possível escândalo. Um analista, sabendo que notícia negativa vende, irá enfatizar os “problemas” existentes, deixando de destacar os aspectos positivos. Ainda não temos isso muito claro, mas provavelmente já existe. 


A análise crítica das demonstrações contábeis enfrenta desafios semelhantes aos discutidos por Nate Silver. Os analistas financeiros podem ser afetados por viéses e distorções na apresentação dos dados contábeis. Embora as demonstrações forneçam uma visão falsamente objetiva da saúde financeira de uma empresa, os números podem esconder escolhas de contabilidade criativas, omissões deliberadas e influências externas. A crescente importância das mídias sociais na disseminação de informações ressalta ainda mais a necessidade de uma análise crítica e cuidadosa da qualidade da informação que lemos, para evitar decisões baseadas em dados distorcidos ou incompletos. 

Foto: Maddi Bazzocco

A PwC está agindo para evitar que o escândalo australiano chegue aos outros reguladores

Da newsletter de Francine McKenna (traduzido via DeepL):

Já se passou mais de um ano desde que a Australian Financial Review (AFR) divulgou a história do escândalo de vazamentos de impostos do governo da PwC Austrália, mas a história está ficando maior, e não desaparecendo. A PwC, no entanto, está fazendo todo o possível para garantir que os grandes nomes dos EUA e do Reino Unido - de parceiros e empresas clientes - não cheguem às manchetes fora da Austrália.

As táticas da empresa lembram a abordagem adotada por todos os envolvidos para abafar o impacto do escândalo de roubo de dados confidenciais da KPMG-PCAOB em 2017-2019 e para desviar a atenção do papel dos auditores em não alertar os investidores durante a Grande Crise Financeira. É também um manual de comunicação de crise para aqueles que lidam com preocupações contínuas relacionadas a todas as falências de bancos auditadas pela KPMG em março passado. (...) 

Um cache de e-mails descoberto pelo AFR mostrou que a PwC havia rapidamente montado uma equipe internacional de combate, o "Projeto América do Norte", para comercializar as informações para multinacionais interessadas em evitar os novos impostos australianos. Em maio de 2023, Tadros, do AFR, estava escrevendo sobre como a PwC Austrália havia cobrado US$ 2,5 milhões em honorários em 2016 para aconselhar 14 clientes sobre como contornar as novas leis de evasão fiscal de multinacionais com base na inteligência compartilhada pelo sócio tributário Collins.

Em julho de 2023, alguns nomes de clientes haviam vazado. Chenoweth, do AFR, relatou que o Uber e o Facebook haviam estabelecido novas estruturas empresariais com o objetivo de contornar a lei de evasão fiscal multinacional da Austrália com base na consultoria da PwC, poucos dias antes de a legislação entrar em vigor em janeiro de 2016.

(...) A constatação de que a questão dos vazamentos de impostos se limita principalmente aos sócios australianos é fundamental para a empresa (PwC), pois sua liderança sênior quer evitar a intervenção de qualquer órgão regulador dos EUA.


No entanto, a PwC continua a resistir a divulgar os relatórios de investigação reais, apenas seu próprio resumo higienizado. Em 9 de fevereiro de 2024, Tadros, do AFR, escreveu: "O processo de reforma da PwC Austrália está sendo prejudicado pela recusa de sua liderança global em identificar os chamados 'seis sujos' parceiros internacionais punidos pelo escândalo de vazamentos de impostos, disse um comitê do Senado à empresa".

Por que a PwC Global está se recusando a citar os nomes dos sócios fora da Austrália que, em suas palavras, "...deveriam ter levantado dúvidas sobre a confidencialidade das informações"?  

Lembre-se de que foi relatado mais de uma vez que o presidente da PwC Global, Bob Moritz, entrou em cena e está liderando os esforços de gerenciamento da crise. Moritz deixará o cargo em junho e o recém-eleito Presidente Global, Mohamed Kande, terá que carregar a bandeira depois disso. 

A PwC protegeu os clientes em todos os momentos, dizendo que eles não sabiam que as informações confidenciais eram a fonte da consultoria da PwC. Supostamente, a PwC também está preocupada com a ira dos órgãos reguladores dos EUA e do Reino Unido, como a SEC, a PCAOB e a FRC.

Eu duvido disso.

Fonte da imagem: aqui

Clima ou sustentabilidade: Austrália desvia do IFRS S1 e S2

Quando há diferença nas palavras:

O governo australiano propôs um projeto de lei que substitui todas as menções de "sustentabilidade" por "clima" no equivalente australiano do IFRS S1, limitando seu escopo às divulgações financeiras relacionadas ao clima. Além disso, propõe diluir o IFRS S2 para instituições financeiras, exigindo apenas consideração da aplicabilidade das divulgações relacionadas às suas emissões financiadas. 



O Instituto Australiano de Finanças Sustentáveis (ASFI) defende o total alinhamento com os padrões do ISSB para garantir interoperabilidade global e racionalização dos requisitos de relatórios, considerando o desvio da AASB como desnecessário. Os Princípios para Investimento Responsável (PRI) recomendam a adoção da IFRS S1 e S2 como linha de base para garantir comparabilidade e interoperabilidade dos dados, permitindo modificações apenas se contribuírem para divulgações aprimoradas e não prejudicarem o padrão global estabelecido pelo ISSB. O Grupo de Investidores em Mudanças Climáticas (IGCC) alerta contra a remoção ou reestruturação de partes dos padrões, destacando o risco de comprometer a integridade da linha de base e adicionar complexidade para repórteres e usuários em todos os mercados.

Foto: Photoholgic

Rir é o melhor remédio


 Liderança ruim e decisão ruim

19 fevereiro 2024

Valor justo e filosofia

Objetivo: Realizar uma incursão nas inter-relações da filosofia da True and Fair View, sob uma perspectiva lato sensu, e a contabilidade do Valor Justo (Fair Value Accounting), sob uma perspectiva stricto sensu, ao defender as relações teleológicas e axiológicas existentes entre seus conceitos e a práxis contábil.

Método: Nessa perspectiva, mediante análise de discurso dos pressupostos filosóficos da Doutrina da Essência de Hegel e da Natureza da Percepção de Merleau-Ponty, foi desenvolvido um ensaio teórico de caráter crítico- argumentativo acerca dessas inter-relações.

Resultados: Com vistas em contribuir para o debate, os argumentos defendidos culminam na proposição de um Diagrama de Percepção Relacional entre TFV, FVA e a práxis contábil.

Contribuições: Os conceitos de verdade, justiça e fidelidade permeiam a teoria da contabilidade e a prática da profissão contábil desde seus primórdios. Para além do debate teórico, sua operacionalização tem conferido um papel importante à contabilidade, o de interpretar e julgar os dados da avaliação e incorporá-los nas demonstrações contábeis. Dessa forma, instiga-se o pesquisador a interpretar a essência subjacente à doutrina dos conceitos contábeis para se ampliar as percepções inerentes às formas com as quais eles se materializam na práxis.

Link para o artigo pode ser encontrado aqui. Artigo de autoria de Sérgio de Iudícibus, Vladimir Regis Oliveira, Jorge Katsumi Niyama e Ilse M Beuren. 

Emergência e transparência

Usando a perspectiva de paradoxo organizacional, o estudo discute como um contexto de emergência nacional modifica a propensão à transparência das dispensas de licitações em prefeituras. A análise empírica indica as tensões à transparência do processo de compras no poder público e que a literatura de controle público deve considerar, de forma diferenciada, os contextos de emergência e de normalidade. Situações emergenciais, em que recursos orçamentários são aplicados a contratações emergenciais em regime de urgência, requerem maior transparência e controle, para reduzir o risco de mau uso do recurso. Paradoxalmente, observam-se redução da transparência e maior fragilização do controle social. Os níveis de transparência de governos locais, sob uma mesma legislação, oscilam de acordo com o apoio político e entendimento de autoridades em diferentes legislaturas e mandatos e entre períodos de emergência ou normalidade. É desejável que entidades de controle e sociedade civil estejam atentas aos eventuais retrocessos nas práticas de transparência em períodos de emergência, mesmo para as prefeituras que são exemplos de transparência em períodos de normalidade. Foi realizada análise de conteúdo de 1.528 dispensas de licitações de 32 municípios paulistas de pequeno porte nos anos de 2019 e 2020. O nível de transparência das licitações foi comparado antes e no 1º ano de pandemia. Em seguida, foram realizadas entrevistas com servidores públicos com experiência nas práticas de transparência nesses municípios, assim como com jornalistas e líderes de organizações não governamentais (ONGs), para validar as reflexões sobre a transparência do processo de contratação durante a pandemia. Situações de emergência podem alterar as práticas associadas à transparência fiscal em governos locais quando autoridades nacionais flexibilizam as regras de contratação. O estudo mostra que a emergência da pandemia da covid-19 gerou redução da transparência na contratação de insumos em alguns municípios, sobretudo nos contratos de insumos e serviços para combater a crise da pandemia.

Aqui o link para o artigo completo

Erro de digitação


Uma versão inicial do comunicado de imprensa do quarto trimestre afirmava que a Lyft estava preparada para aumentar sua margem de EBITDA ajustado — uma medida de lucratividade amplamente observada — em 5%, sugerindo uma virada impressionante na sorte da empresa. O único problema é que o número de 5% foi um erro de digitação: o valor real deveria ter sido apenas um décimo disso (0,5%) — um erro que implicava centenas de milhões de dólares adicionais em lucros (ajustados) para o próximo ano.

Dentro de uma hora, os executivos da Lyft explicaram as expectativas mais moderadas aos analistas em uma teleconferência de resultados, com a empresa subsequentemente emitindo um comunicado de imprensa corrigido. Embora a Lyft tenha desde então reduzido seus ganhos, no momento da escrita, as ações ainda estão em alta de 30% no dia. De fato, o erro obscurece o que, de outra forma, foi uma atualização sólida da Lyft após um ano difícil.

Em abril passado, a Lyft demitiu mais de 1.000 funcionários — uma das várias medidas implementadas para reduzir custos enquanto a empresa tenta se juntar ao maior concorrente Uber em se tornar consistentemente lucrativa. Como tantos de seus pares, a Lyft também enfrenta batalhas contínuas com seus motoristas, com mais de 100.000 trabalhadores da Uber, Lyft e Deliveroo programados para entrar em greve hoje devido a disputas sobre pagamento e condições de trabalho.

Sam Altman quer 7 trilhões de dólares - 2

O texto publicado anteriormente é uma tradução do AstralCodex. Há uma literatura mais precisa indicada antes do texto e um grande número de comentários que são interessantes. Ontem, quando elaborava esta postagem, eram mais de 400 comentários. 

A análise mostra que há uma razão prática para acreditar que as futuras evoluções do GPT terão muitas dificuldades práticas. É bem verdade que a análise é realizada tendo por base poucos dados: foram somente quatro versões de Chat, o que inviabiliza uma projeção mais precisa. Uma imprecisão em alguma da estimativa pode inviabilizar toda a análise realizada. 

Além disso, é importante lembrar que o GPT é fruto de uma tecnologia que foi desenvolvida a partir de pesquisas que foram realizadas pelo Google e divulgadas livremente. Nada impede que um novo produto, mais evoluído, possa surgir e obter os mesmo resultados sem a necessidade da grande quantidade de dados que o Chat precisa. Mas a empresa ou o programador que desenvolver essa tecnologia talvez fique resistente em divulgar o conhecimento, o que pode atrasar o surgimento dessa possibilidade. De certa forma o texto debate um pouco isso quando comenta sobre a possibilidade de usar o próprio Chat para o desenvolvimento de uma nova versão.

Mas há forças contrárias que não foram consideradas no texto, talvez em razão do concisão. Lembro aqui que a versão do Chat foi obtida usando de maneira "livre" as informações disponíveis na rede. Os grupos de mídia e os produtores de conteúdo já estão reagindo no sentido de exigir pagamento pelo uso da informação para o treinamento do chat. Vejo que isso pode ser um problema no futuro se a justiça dos países começarem a impedir o livre uso dessa informação. 

Há muito debate pela frente. 

Sam Altman quer 7 trilhões de dólares - 1

Traduzido pelo ChatGPT do AstralCodex

I.

Sam Altman quer $7 trilhões.

De certa forma, isso não é novidade. Todo mundo quer $7 trilhões. Eu quero $7 trilhões. Eu não vou conseguir, e provavelmente Sam Altman também não.

Ainda assim, a mídia trata isso como digno de comentário, e eu concordo. É um lembrete útil do que será necessário para a IA escalar nos próximos anos.

A lógica básica: GPT-1 custou aproximadamente nada para treinar. GPT-2 custou $40.000. GPT-3 custou $4 milhões. GPT-4 custou $100 milhões. Detalhes sobre o GPT-5 ainda são secretos, mas uma estimativa extremamente não confiável diz $2,5 bilhões, e isso parece a ordem correta de magnitude, dado os $8 bilhões que a Microsoft deu para a OpenAI.

Então, cada GPT custa entre 25x e 100x o último. Vamos dizer 30x em média. Isso significa que podemos esperar que o GPT-6 custe $75 bilhões, e o GPT-7 custe $2 trilhões.

(A menos que eles coloquem o nome "GPT-6" em um modelo que não seja uma geração completa à frente do GPT-5. Considere esses números como representando modelos que estão, por exemplo, tão à frente do GPT-4 quanto o GPT-4 estava do GPT-3, independentemente de como os rotulem.)

Vamos tentar dividir esse custo. Em um sentido muito abstrato, treinar uma IA envolve três coisas:

  • Computação (ou seja, poder de computação, hardware, chips)
  • Eletricidade (para alimentar a computação)
  • Dados de treinamento

Computação

A computação é medida em operações de ponto flutuante (FLOPs). O GPT-3 levou 10^23 FLOPs para treinar, e o GPT-4 plausivelmente 10^25.

A capacidade de todos os computadores do mundo é de cerca de 10^21 FLOP/segundo, então eles poderiam treinar o GPT-4 em 10^4 segundos (ou seja, duas horas). Como a OpenAI tem menos computadores que todos os do mundo, levou seis meses. Isso sugere que a OpenAI estava usando cerca de 1/2000 dos computadores do mundo durante esse tempo.

Se mantivermos nosso fator de escalonamento de 30x, o GPT-5 levará 1/70 dos computadores do mundo, o GPT-6 levará 1/2, e o GPT-7 levará 15 vezes mais computadores do que existem. A capacidade de computação do mundo cresce rapidamente - esta fonte diz que ela dobra a cada 1,5 anos, o que significa que ela cresce por uma ordem de magnitude a cada cinco anos, o que significa que esses números provavelmente são superestimativas. Se imaginarmos cinco anos entre GPTs, então o GPT-6 realmente só precisará de 1/10 dos computadores do mundo, e o GPT-7 só precisará de 1/3. Ainda assim, 1/3 dos computadores do mundo é muita coisa.

Provavelmente você não pode obter 1/3 dos computadores do mundo, especialmente quando todas as outras empresas de IA também os querem. Você precisaria aumentar muito a fabricação de chips.

Energia

O GPT-4 consumiu cerca de 50 gigawatt-horas de energia para treinar. Usando nosso fator de escalonamento de 30x, esperamos que o GPT-5 precise de 1.500, o GPT-6 precise de 45.000, e o GPT-7 precise de 1,3 milhão.

Digamos que a execução de treinamento dure seis meses, ou seja, 4.320 horas. Isso significa que o GPT-6 precisará de 10 GW - cerca da metade da produção da Usina Hidrelétrica das Três Gargantas, a maior do mundo. O GPT-7 precisará de quinze Usinas Hidrelétricas das Três Gargantas. Isso não é apenas "o mundo precisará produzir tanta energia no total e você pode comprá-la". Você precisa da energia bastante próxima ao seu centro de dados. Sua melhor aposta aqui é ou conseguir um pipeline inteiro como o Nord Stream conectado ao seu centro de dados, ou então um reator de fusão.

(Sam Altman está trabalhando em energia de fusão, mas isso parece ser uma coincidência. Pelo menos, ele está interessado em fusão desde pelo menos 2016, o que é muito cedo para ele saber de qualquer coisa disso.)

Dados de Treinamento

Estes são o texto ou imagens ou qualquer coisa que a IA lê para entender como seu domínio funciona. O GPT-3 usou 300 bilhões de tokens. O GPT-4 usou 13 trilhões de tokens (outra fonte diz 6 trilhões). Isso parece que nosso fator de escalonamento de 30x ainda se mantém, mas teoricamente os dados de treinamento deveriam escalar como a raiz quadrada da computação - então você deveria esperar um fator de escalonamento de 5,5x. Isso significa que o GPT-5 precisará de algo em torno de 50 trilhões de tokens, o GPT-6 algo em trilhões com três dígitos, e o GPT-7 algo em quadrilhões.

Não há tanto texto no mundo todo. Talvez você possa obter alguns trilhões a mais combinando todos os livros publicados, mensagens do Facebook, tweets, mensagens de texto e e-mails. Você poderia conseguir mais adicionando todas as imagens, vídeos e filmes, uma vez que as IA aprendam a entendê-los. Ainda assim, não acho que você chegará a cem trilhões, quanto mais a um quadrilhão.

Você poderia tentar fazer uma IA que possa aprender coisas com menos dados de treinamento. Isso deveria ser possível, porque o cérebro humano aprende coisas sem ler todo o texto do mundo. Mas isso é difícil e ninguém tem uma ótima ideia de como fazer isso ainda.

Mais promissor é o uso de dados sintéticos, onde a IA gera dados para si mesma. Isso parece uma máquina de movimento perpétuo que não funcionaria, mas há truques para contornar isso. Por exemplo, você pode treinar uma IA de xadrez em dados sintéticos fazendo-a jogar contra si mesma um milhão de vezes. Você pode treinar uma IA de matemática fazendo-a gerar aleatoriamente passos para uma prova, eventualmente tropeçando em uma correta por acaso, detectando automaticamente a prova correta e então treinando com ela. Você pode treinar uma IA de jogo de vídeo fazendo-a fazer movimentos aleatórios e então ver qual obtém a pontuação mais alta. Em geral, você pode usar dados sintéticos quando não sabe como criar bons dados, mas sabe como reconhecê-los uma vez que existam (por exemplo, a IA de xadrez ganhou o jogo contra si mesma, a IA de matemática obteve uma prova correta, a IA de jogo de vídeo obteve uma boa pontuação). Mas ninguém sabe como fazer isso bem para texto escrito ainda.

Talvez você possa criar uma IA inteligente através de alguma combinação de texto, xadrez, matemática e videogames - alguns humanos seguem este currículo, e funciona bem para eles, mais ou menos.

Este é um pouco diferente - computação e eletricidade podem ser resolvidas com muito dinheiro, mas este pode exigir mais de uma descoberta.

Progresso Algorítmico

Isso significa "as pessoas fazem descobertas e se tornam melhores em construir IA". Parece ser mais uma daquelas coisas que dá uma ordem de magnitude de progresso a cada cinco anos mais ou menos, então estou revisando as estimativas acima para baixo um pouco.

Juntando Tudo

O GPT-5 pode precisar de cerca de 1% dos computadores do mundo, uma pequena usina elétrica e muitos dados de treinamento.

O GPT-6 pode precisar de cerca de 10% dos computadores do mundo, uma grande usina elétrica e mais dados de treinamento do que existem. Provavelmente isso se parece com um centro de dados do tamanho de uma cidade ligado a muitos painéis solares ou a um reator nuclear.

O GPT-7 pode precisar de todos os computadores do mundo, uma usina elétrica gigantesca além de qualquer uma que exista atualmente, e muito mais dados de treinamento do que existem. Provavelmente isso se parece com um centro de dados do tamanho de uma cidade ligado a uma usina de fusão.

Construir o GPT-8 é atualmente impossível. Mesmo que você resolva dados sintéticos e energia de fusão, e assuma todo o controle da indústria de semicondutores, você não chegará nem perto. Sua única esperança é que o GPT-7 seja superinteligente e te ajude com isso, seja te dizendo como construir IAs baratas, seja aumentando a economia global a ponto de financiar coisas atualmente impossíveis.


Tudo sobre GPTs acima de 5 é uma projeção ingênua das tendências existentes e provavelmente falsa. Estimativas de ordem de magnitude apenas. Você pode chamar isso de "especulativo" e "insano". Mas se Sam Altman não acreditasse em algo pelo menos tão especulativo e insano, ele não estaria pedindo $7 trilhões.

II.

Vamos voltar um pouco.

O GPT-6 provavelmente custará $75 bilhões ou mais. A OpenAI não pode pagar por isso. A Microsoft ou o Google poderiam pagar, mas isso levaria uma fração significativa (talvez metade?) dos recursos da empresa.

Se o GPT-5 falhar, ou for apenas uma melhoria incremental, ninguém vai querer gastar $75 bilhões fazendo o GPT-6, e tudo isso será irrelevante.

Por outro lado, se o GPT-5 estiver próximo do nível humano, e revolucionar indústrias inteiras, e parecer prestes a iniciar uma mudança no nível da Revolução Industrial nos assuntos humanos, então $75 bilhões para o próximo parecerão uma pechincha.

Além disso, se você estiver iniciando uma mudança no nível da Revolução Industrial nos assuntos humanos, talvez as coisas fiquem mais baratas. Eu não espero que o GPT-5 seja bom o suficiente para que ele possa fazer uma grande contribuição para o planejamento do GPT-6. Mas você tem que pensar nisso de forma escalonada. Ele pode fazer coisas suficientes para que projetos grandes (como o GPT-6, ou suas fábricas de chips associadas, ou suas usinas associadas) fiquem 10% mais baratos? Talvez.


O resultado disso é que estamos olhando para um processo exponencial, como R para uma pandemia. Se o expoente for > 1, ele cresce muito rapidamente. Se o expoente for < 1, ele desaparece.

Neste caso, se cada nova geração de IA for excitante o suficiente para inspirar mais investimentos e/ou inteligente o suficiente para diminuir o custo da próxima geração, então esses dois fatores combinados permitem a criação de outra geração de IAs em um ciclo de feedback positivo (R > 1).

Mas se cada nova geração de IA não for excitante o suficiente para inspirar o investimento massivo necessário para criar a próxima, e não for inteligente o suficiente para ajudar a reduzir o preço da próxima geração por conta própria, então em algum momento ninguém estará disposto a financiar IAs mais avançadas, e o atual boom de IA desaparece (R < 1). Isso não significa que você nunca ouvirá falar sobre IA - as pessoas provavelmente vão criar IA incrível, arte e vídeos e androides e namoradas e robôs assassinos. Isso apenas significa que a inteligência bruta dos maiores modelos não aumentará tão rapidamente.

Mesmo quando R < 1, ainda obtemos os modelos maiores eventualmente. Fábricas de chips podem gradualmente produzir mais chips. Pesquisadores podem gradualmente fazer mais descobertas algorítmicas. Se nada mais, você pode passar dez anos treinando o GPT-7 muito lentamente. Isso apenas significa que obteremos IA humana ou acima da humana no meio do século XXI, em vez do início.

III.

Quando Sam Altman pede $7 trilhões, eu o interpreto como querendo fazer este processo de maneira centralizada, rápida e eficiente. Um cara constrói as fábricas de chips e usinas de energia e as deixa todas prontas a tempo de treinar o próximo grande modelo.

Provavelmente ele não conseguirá seus $7 trilhões. Então este mesmo processo acontecerá, mas mais devagar, mais fragmentado e mais descentralizado. Eles vão lançar o GPT-5. Se for bom, alguém vai querer construir o GPT-6. O capitalismo normal fará com que as pessoas aumentem gradualmente a capacidade de chips. As pessoas farão muitos GPT-5.1s e GPT-5.2s até que finalmente alguém dê o passo e construa a usina gigante em algum lugar. Tudo isso levará décadas, acontecerá de forma bastante natural, e nenhuma pessoa ou corporação terá um monopólio.

Eu ficaria mais feliz com a segunda situação: a perspectiva de segurança aqui é que queremos o máximo de tempo possível para nos prepararmos para a IA disruptiva.

Sam Altman anteriormente endossou esta posição! Ele disse que os esforços da OpenAI eram bons para a segurança, porque você quer evitar um excesso de computação. Ou seja, você quer que o progresso da IA seja o mais gradual possível, não que progrida em solavancos repentinos. E uma maneira de manter as coisas graduais é maximizar o nível de IA que você pode construir com seus chips atuais, e então a IA pode crescer (no pior dos casos) tão rápido quanto o fornecimento de chips, que naturalmente cresce bastante lentamente.

...a menos que você peça $7 trilhões para aumentar o fornecimento de chips em um salto gigante o mais rápido possível! As pessoas que confiaram na boa natureza da OpenAI com base no argumento do excesso de computação estão se sentindo traídas agora.

Minha impressão atual das múltiplas perspectivas contraditórias da OpenAI aqui é que eles estão genuinamente interessados na segurança - mas apenas na medida em que isso seja compatível com a escalada rápida da IA. Isso está longe de ser a pior maneira que uma empresa de IA poderia ser. Mas também não é reconfortante.

Musk e a SEC

Elon Musk está questionando um acordo com a SEC nos EUA que exigia a supervisão de suas postagens online, alegando que viola seus direitos de liberdade de expressão. Musk pediu à Suprema Corte dos EUA para reverter parte do acordo feito em 2018, que envolveu uma ação movida pela SEC por declarações consideradas "falsas e enganosas" sobre a privatização da Tesla. O acordo incluía termos como a renúncia à presidência da Tesla, multa civil e pré-aprovação de publicações relacionadas à Tesla. 


A SEC alegou que Musk violou o acordo em 2019, resultando em sanções. Os tribunais distritais e de apelação decidiram a favor da SEC, argumentando que Musk concordou voluntariamente com o acordo. Porém, Musk contesta, argumentando que a SEC não pode impor uma "regra da mordaça" que viola a Primeira Emenda. A petição busca revisar a constitucionalidade do acordo e suas implicações sobre a liberdade de expressão. 

Este caso levanta questões sobre os limites do poder regulatório sobre a liberdade de expressão no ambiente digital. 

Rir é o melhor remédio


 007 na segunda de manhã

18 fevereiro 2024

Filho de Biden também com problemas fiscal



Os políticos poderosos frequentemente querem se aproveitar do poder para se beneficiar. O problema é serem expostos demais e seus pecados virarem notícia. Além da batalha longa da família Trump, o filho do atual presidente dos Estados Unidos (e provável candidato a reeleição), Hunter Biden, está bem enrolado com acusações fiscais. Hunter tem várias acusações relacionadas com sua declaração de imposto de renda, inclusive de não pagamento de 1,4 milhão entre 2016 a 2019. Mesmo tendo pago seus impostos a partir de 2018, a acusação é que o valor não foi o adequado, pois Hunter apresentou informações falsas, que resultou em um valor bem menor do que o devido. 

Emoção e Dinheiro

Eis o início da notícia

A mudança de Jeff Bezos para Miami poderia economizar mais de US$ 600 milhões em impostos. O bilionário, terceiro homem mais rico do mundo, com um patrimônio de US$ 189,6 bilhões segundo a Forbes, se mudou de Seattle para Miami para ficar mais perto de seus pais, chamando isso de uma “decisão emocional”.


No entanto, também há uma vantagem financeira nisso. Ao contrário do estado de Washington, onde fica Seattle, a Flórida não cobra imposto sobre ganhos de capital com a venda de ações.

O fundador da Amazon planeja vender 50 milhões de ações da gigante do comércio eletrônico até 31 de janeiro de 2025. Pela cotação da terça-feira (13) isso movimentaria US$ 8,4 bilhões (R$ 41,92 bilhões). Como o lucro é isento na Flórida, cálculos do site CNBC indicam que Bezos vai economizar cerca de US$ 600 milhões em impostos que teriam de ser pagos se ele tivesse domicílio fiscal em Seattle.

17 fevereiro 2024

Língua mais sexy

Qual é o sotaque pelo qual você mais se sente atraído? Bem, de acordo com a plataforma de aprendizado de idiomas Babbel, é oficial: o francês não é mais o sotaque mais sexy do mundo. Essa afirmação ousada será uma decepção para muitos, especialmente porque a Babbel já havia entrevistado mais de 15.000 pessoas em 2017, um grupo que nomeou o francês como o "sotaque mais sexy".


Então, quem destronou la belle langue française? Bem, 6.000 pessoas do Reino Unido, França, Espanha, Itália e Alemanha, bem como dos EUA, foram solicitadas a avaliar quais idiomas são percebidos como "mais sexy", "mais romântico" e "mais apaixonado"."

As descobertas afirmaram que o italiano era considerado pela maioria "mais sexy" e o "mais romântico" pelo maior número de pessoas envolvidas no estudo.

"Existem certas características do italiano que podem contribuir para seu apelo", explicou o professor de língua Babbel Noël Wolf ao jornal britânico Daily Mail. "A ascensão e queda do tom no italiano falado pode criar uma qualidade musical, que algumas pessoas acham atraente e atraente", disse Wolf. "Certas características fonéticas, como o lançamento de sons 'r', podem ser distintas em italiano, o que para muitos é considerado encantador ou atraente."

O inglês britânico foi considerado o "mais educado", enquanto o alemão conquistou o primeiro lugar no idioma "mais direto". Claramente, nenhuma expectativa foi subvertida aqui.

Fonte: adaptado daqui

Rir é o melhor remédio

 

Mais tarefa para fazer: consequência de ser competente

Realidade, mídia social e contabilidade

O mundo da mídia social não é o mundo real. Só uma pessoa muito inocente para não saber disso. A Bloomberg estranhou como a conta do Instagram ou do TikTok da empresa WeWork parecia que nada estava ocorrendo (foto abaixo), exceto naturalmente para alguns dos comentários. 


Em novembro - poucos dias depois que a WeWork entrou com pedido de falência - a empresa comemorou a Semana de Gratidão aos Membros. Em dezembro, eles publicaram um vídeo "Year in Review", no qual um seguidor perguntou por que os problemas não com a falência não foram incluídos. Em janeiro, eles publicaram uma foto de um cachorro bebendo uma xícara de matcha gelado. (...) É tão ilusório que eu até adoro.

Se você quiser saber sobre uma empresa, afaste da mídia social. Parece uma regra simples, não? 

Um método estranho de imputação de dados no Excel

Este é um daqueles casos em que você não acredita no que está lendo. Um estudo com 27 países, já publicado, empregou um método pouco usual para lidar com os dados faltantes. O primeiro autor é um professor de uma universidade da Suécia, e o caso foi descoberto por um aluno de doutorado.

O estudante estava trabalhando com algo semelhante e sabia que existiam informações ausentes. Na linguagem mais técnica, seriam os "missing". Há diversas formas de tratar essa situação: você pode substituir pela média, fazer uma correlação entre duas variáveis, entre outras maneiras. Um livro básico, como "Análise Multivariada", de Hair et al., tem uma explicação sobre isso. Alguns softwares ajudam no tratamento desse problema, como o SPSS.

O que o estudante descobriu não se encaixava em nenhum dos casos. Ele ficou curioso, pois o artigo afirmava que tinha tratado os dados como se não existissem lacunas, e por isso entrou em contato com Almas Heshmati (foto), o professor de economia da Universidade Jönköping, na Suécia, perguntando como ele lidou com os dados ausentes.


O professor respondeu que tinha usado a função de preenchimento automático do Excel para corrigir os dados. Mas se o espaço tivesse sido preenchido com números negativos, Heshmati usava o último valor positivo. Detalhe, do Excel. (Nada contra a planilha) O processo de imputação é comum em pesquisa, mas o uso do preenchimento automático do Excel como técnica é algo inusitado.

Mas o aluno descobriu também que, em vários casos, quando não havia observações para o preenchimento, os autores usaram os dados de um país adjacente. E com esse método, o professor preencheu milhares de células do seu banco de dados. A proporção de intervenção dos pesquisadores é maior que 10% do total.

Rir é o melhor remédio

Liderança, teoria e prática
 

16 fevereiro 2024

O caso da "amizade" entre auditor e empregado da empresa auditada

O GoingConcern apresenta uma situação onde o auditor aproximou-se demais da empresa auditada. Sendo mais claro, um dos auditores se envolveu “romanticamente” com o executivo da empresa. O caso ocorreu com a empresa Asda, cujo executivo Mohsin Issa, iniciou um relacionamento com uma das auditoras da EY. 


A EY afirmou que a auditora envolvida não tinha realizado nenhum trabalho relacionado com a auditoria da Asda e que a mesma tinha deixado a empresa. A Asda é uma empresa de varejo, que atua no Reino Unido, com 630 lojas físicas e 160 mil empregados. Fatura 23 bilhões de libras e é a segunda empresa do setor. Apesar de ter sido adquirida pelo Walmart, a Asda atua de forma independente. 

O caso que afetou a EY não é o primeiro para a big four. Em 2014 a EY descobriu um relacionamento entre um auditor e o ex-diretor de contabilidade e controlador da empresa Ventas. E pagou uma multa por isso nos Estados Unidos. 

Ou seja, nada de amizade entre o auditor e qualquer empregado da empresa auditada. 

Rir é o melhor remédio

Mude a forma de medir
 

15 fevereiro 2024

Anguilla tem na internet uma importante fonte de receita

Anguilla é um conjunto de ilhas localizado no Caribe. Sua capital é The Valley e seus 15 mil habitantes possuem o inglês como língua oficial. Sua economia dependia do turismo, pesca e setor financeiro. Nos últimos meses, a pequena ilha passou a receber um fluxo de recursos oriundos de uma fonte diferente de divisas: o aluguel de domínio da internet. Toda vez que alguém decide colocar a terminação de inteligência artificial com seu nome, que corresponde a “ai” em língua inglesa, é necessário pagar uma taxa para o proprietário do domínio “ai”, no caso Anguilla. 


Parece pouco, mas segundo o administrador do registro corresponde a 3 milhões de dólares por mês, com estimativa de dobrar para 6 milhões em um ano. Ao contrário de Tuvalu, domínio “tv”,  que terceirizou o domínio, a gestão, o gerenciamento é feito localmente, o que significa que boa parte da receita está chegando aos cofres públicos.